College of Engineering

تجامعة الملك سعود King Saud University

Department of Civil Engineering

Department of C			
CE 5	66 Plasticity in Structural Engineeri	ng	
Credit and Contact hours	3/3 (Lectures), 0 (Tutorials), 0 (Laboratory)		
Required, or Elective	Required for a MSCE degree		
Course Description	Fundamentals of theory of plasticity; Inelastic behavior of sections, members and structures; Fundamentals and basic theories of limit analysis; Applications of limit analysis applications to plane concrete and metal structures; Plastic design of continuous beams and frames.		
Prerequisites or Co-requisites	None		
Course Learning Outcomes	Students completing this course successfully will be able to		
	Course Learning Outcomes	Related Program Outcomes	
	CLO1: Recognize the plastic behavior, plastic collapse, and the basic of plastic analysis and design concepts of structural members	K1	
	CLO2 : Recognize the plastic hinge assumption to evaluate the plastic collapse loads	K1	
	CLO3 : Formulate and implement the plastic failure mechanisms, and calculate the collapse load of slabs, beams and frames using the basic plastic analysis theorems.	S1	
	CLO4 : Use the plastic design methods for evaluating the collapse load factor and bending moments at the plastic hinges of beams and frames.	S1	
	CLO5: Develop load-deflection relations to estimate defections in plastic collapse conditions	S1	
	CLO6 : Use plasticity module of a computer software to	S1	

simulate the plastic failure mechanisms of structures.

Student Outcomes related to this Course	K1 . Recognize advanced engineering knowledge, concepts and techniques to identify, interpret and analyze complex and real-life engineering problems.			
	S1 . Provide solution for complex and real-life engineering problems through critical thinking and using modern engineering tools and identify its impact on social and ethical issues.			
Topics Covered	List of Topics		Related CLOs	
	1. Basic Hypothesis		CLO2	
	2. Plastic hinge and plastic collapse concepts		CLO1	
	3. Simple cases of plastic collapse		CLO3	
	4. Basic theorems of plastic analysis of structures		CLO3	
	5. Methods of Plastic Design		CLO4	
	6. Estimation of defection in collapse conditions		CLO5	
	7. Yield line analysis of one-, and two-way reinforced concrete slabs		CLO5	
	8. Computer applications		CLO6	
Textbook(s) and Other Required Material	 Neal, B.G., 1985. <i>The plastic methods of structural analysis</i>. 3rd Ed. John Wiley & Sons. Wight, J. K. <i>Reinforced Concrete: Mechanics and Design</i>. Global Edition." (2016)-Chapter 14 			
Grading System	Assignments and Homework	5%		
	Compute Assignment	5%		
	Presentation of Project	10 %		
	Two Midterm Exams	40%		
	Final Exam	40%		
Instructors	Dr. Yassir M. Abbas; Office 2A84/1; Email: <u>yabbas@ksu,edu.sa</u>			
Date of Review	February, 2021			